Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ismail Yıldırım, ${ }^{\text {a }}$ Namık Özdemir, ${ }^{\text {b }}$ * Yunus Akçamur, ${ }^{\text {a }}$ Muharrem Dinçer ${ }^{\text {b }}$ and Ömer Andaç ${ }^{\text {c }}$
${ }^{\text {a }}$ Erciyes University, Arts and Sciences Faculty, Department of Chemistry, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\mathrm{c}}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey

Correspondence e-mail: namiko@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.043$
$w R$ factor $=0.079$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Benzoyl-1,5-diphenyl-1 H-pyrazole-3carboxylic acid methanol solvate

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{CH}_{4} \mathrm{O}$, the $\mathrm{N}-\mathrm{N}$ bond distance in the pyrazole ring, which is planar within $0.008 \AA$, is 1.3634 (18) \AA. The crystal packing is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Comment

Derivatives of pyrazole continue to attract interest because of their wide spectrum of biological, medicinal (Badawey \& ElAshmawey, 1998) and agricultural (Thomson, 1997) activities. Some pyrazoles have been reported to possess significant antimicrobial (Mahajan et al., 1991), antiviral (Baraldi et al., 1998), antitumor (Hatheway et al., 1978; Katayama \& Oshiyama, 1997), antifungal (Chen \& Li, 1998), pesticidal (Londershausen, 1996), anticonvulsant (Lepage \& Hublot, 1992), antihistaminic (Mishra et al., 1998) and antidepressant activities (Bailley et al., 1985), as well as interesting properties in commercially important dyestuffs (Baroni \& Kovyrzina, 1961; Neunhoeffer et al., 1959). Recyclization reactions of 4-benzoyl-5-phenyl-2,3-dihydro-2,3-furandione with various phenylhydrazones and phenylhydrazine lead to pyrazolecarboxylic acid and pyridazinones (Akçamur et al., 1986, 1997; Şener et al., 2002, 2004; Verirşen \& Erturan, 1998). As part of our ongoing study of the relationship between the molecular and crystal structures of pyrazole derivatives, a crystal structure determination of the title compound, (I), has been undertaken and the results are presented here.

Previously, we have reported closely related compounds, namely methyl 4-benzoyl-1,5-diphenyl-1 H -pyrazole-3-carboxylate, (II) (Dinçer, Özdemir, Yıldırım, Demir, Akçamur \& Işık, 2004), and 4-benzoyl- N-methyl-1,5-diphenyl-1H-pyra-

Received 20 December 2004 Accepted 24 December 2004 Online 8 January 2005

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the title compound, (I), with the atomic numbering scheme; both disordered components are shown. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level. The intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are represented by dashed lines.
zole-3-carboxamide, (III) (Dinçer, Özdemir, Yıldırım, Demir \& Işık, 2004). The main aim of the present investigation is to study the differences between the structures of (I), (II) and (III), and to determine the type of hydrogen bonding.

The conformation of (I), together with the atom-numbering scheme, is shown in Fig. 1. In the structure, the phenyl ring at the 5-position and the O atom (O 2) belonging to the carboxylic acid group show positional disorder and the refined site-occupancy factors of the disordered components (C13a$\mathrm{C} 17 a$ and $\mathrm{C} 13 b-\mathrm{C} 17 b$, and $\mathrm{O} 2 a$ and $\mathrm{O} 2 b$) are 0.51 (1) and 0.49 (1), respectively. The planes of the $\mathrm{C} 13 a-\mathrm{C} 17 a$ and $\mathrm{C} 13 b-\mathrm{C} 17 b$ parts seem to be rotated with respect to each other about the $\mathrm{C} 12 \cdots \mathrm{C} 15$ vector. The dihedral angle between these two planes, including atom C 12 , is 36.7 (8) ${ }^{\circ}$.

As expected, all five rings $[A(\mathrm{~N} 1 / \mathrm{N} 2 / \mathrm{C} 1-\mathrm{C} 3), B(\mathrm{C} 6-\mathrm{C} 11)$, $C(\mathrm{C} 12-\mathrm{C} 17 a), C^{\prime}(\mathrm{C} 12-\mathrm{C} 17 b)$ and $\left.D(\mathrm{C} 18-\mathrm{C} 23)\right]$ are essentially planar. The maximum deviations from the leastsquares plane of the pyrazole ring is 0.008 (1) \AA for atom N 2 . However, all fragments in the structure do not share a common plane. The dihedral angles between the mean planes of the rings are $71.45(A / B), 65.67(A / C), 77.90\left(A / C^{\prime}\right), 66.70$ $(A / D), 85.48(B / C), 78.53\left(B / C^{\prime}\right), 43.37(B / D), 67.59(C / D)$ and $77.17^{\circ}\left(C^{\prime} / D\right)$. The Φ_{CN} torsion angle ($\mathrm{C} 12-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 18$) is $4.0(4)^{\circ}$, which shows that the conformation about the C3-N1 bond is $(+)$ synperiplanar. The $\Phi_{\mathrm{CC}}(\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 12$ and $\mathrm{C} 4-$ $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5)$ torsion angles are $-4.3(4)$ and $-1.8(4)^{\circ}$, respectively, showing that the conformations about the C2-C3 and $\mathrm{C} 1-\mathrm{C} 2$ bonds are (-)synperiplanar.

The $\mathrm{N}-\mathrm{N}$ bond distance is 1.363 (2) \AA. Comparison of the bond lengths and angles of the pyrazole rings in (I), (II) and (III) shows that there are no important differences in (I) with respect to the others. The crystal structure contains intermolecular hydrogen bonds (Table 2). As can be seen in Fig. 2, the methanol solvent molecule plays an active role in linking

Figure 2
A projection of the crystal structure of (I) approximately along the a axis. Dashed lines show the intermolecular interactions.
the molecules. The hydrogen bonds between atoms O 2 and O 4 , acting both as donors and acceptors, together with $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds form an $R(14)$ ring. These interactions along with the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) generate a two-dimensional network.

Experimental

4-Benzoyl-5-phenyl-2,3-dihydro-2,3-furandione $\quad(2 \mathrm{~g}, \quad 7.15 \mathrm{mmol})$ (Ziegler et al., 1967) and phenylhydrazine ($0.81 \mathrm{~g}, 7.16 \mathrm{mmol}$), as described by Akçamur et al. (1986), were refluxed in boiling benzene $(30 \mathrm{ml})$ for $1-1.5 \mathrm{~h}$. The solvent was removed by evaporation and the oily residue was triturated with dry diethyl ether to give a crude solid, which was then recrystallized from methanol, yielding pure 4-benzoyl-1,5-diphenyl- $1 H$-pyrazole-3-carboxylic acid, (I) (1.31 g, 49\%; m.p. $468-470 \mathrm{~K})$. Solvents were dried by refluxing with the appropriate drying agents and distilled before use. All other reagents were purchased from Merck, Fluka, Aldrich or the Acros Chemical Co., and used without further purification. Analysis calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 74.99, H 4.38, N 7.60\%; found: C 75.20, H 4.50, N 7.47\%.

Crystal data

[^1][^2]
Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.965, T_{\text {max }}=0.984$
27164 measured reflections 3914 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.079$
$S=1.00$
3914 reflections
327 parameters

1743 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.099$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-22 \rightarrow 22$
$l=-24 \rightarrow 24$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0154 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.11 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C4			
O2 $a-\mathrm{C} 4$	$1.186(2)$	$\mathrm{N} 1-\mathrm{C} 18$	$1.449(2)$
O2b-C4	$1.300(6)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.331(2)$
O3-C5	$1.308(8)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.398(3)$
O4-C24	$1.218(2)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.502(3)$
N1-C3	$1.385(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.388(2)$
N1-N2	$1.346(2)$	$\mathrm{C} 2-\mathrm{C} 5$	$1.475(3)$
	$1.3634(18)$	$\mathrm{C} 3-\mathrm{C} 12$	$1.483(3)$
C3-N1-N2			
C3-N1-C18	$112.36(15)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$107.07(17)$
N2-N1-C18	$130.22(16)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 12$	$123.02(17)$
C1-N2-N1	$117.33(18)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 12$	$129.9(2)$
N2-C1-C2	$103.84(16)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2 a$	$124.5(4)$
N2-C1-C4	$112.77(15)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2 b$	$125.5(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	$119.16(19)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 1$	$122.7(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$127.9(2)$	$\mathrm{O} 2 a-\mathrm{C} 4-\mathrm{C} 1$	$112.3(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5$	$103.93(18)$	$\mathrm{O} 2 b-\mathrm{C} 4-\mathrm{C} 1$	$111.0(5)$
C1-C2-C5	$126.19(18)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 2$	$119.6(2)$
	$129.81(17)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6$	$121.0(2)$
C4-C1-C2-C5			
C18-N1-C3-C12	$-1.8(4)$	$\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 12$	$-4.3(4)$

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2^{\text {i }}$	0.82	1.99	2.804 (2)	176
$\mathrm{O} 2 b-\mathrm{H} 2 b \cdots \mathrm{O} 4$	0.82	1.77	2.583 (10)	171
$\mathrm{O} 2 a-\mathrm{H} 2 a \cdots \mathrm{O} 4$	0.82	1.77	2.576 (8)	165
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.46	3.339 (3)	158
$\mathrm{C} 14 a-\mathrm{H} 14 a \cdots \mathrm{O} 4^{\text {iii }}$	0.93	2.53	3.334 (6)	145

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (iii) $-x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.
H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at $0.82 \AA$ for O -bound H atoms, $0.93 \AA$
for the benzene ring H atoms and $0.96 \AA$ for the methyl group H atoms. The displacement parameters of the H atoms were constrained as $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl atoms) of the carrier atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

This study was supported financially by the Research Center of Ondokuz Mayis University and the Research Center of Erciyes University.

References

Akçamur, Y., Penn, G., Ziegler, E., Sterk, H., Kollenz, G., Peters, K., Peters, E.-M. \& von Schnering, H. G. (1986). Monatsh. Chem. 117, 231-245.

Akçamur, Y., Şener, A., Ipekoğlu, A. M. \& Kollenz, G. (1997). J. Heterocycl. Chem. 34, 221-224.
Badawey, E. \& El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349-361.
Bailley, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., Defelice A. F. \& Feigenson, M. E. (1985). J. Med. Chem. 28, 256-263.

Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. \& Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.
Baroni, E. E. \& Kovyrzina, K. A. (1961). Zh. Obshch. Khim. 31, 1641-1645.
Chen, H. S. \& Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.
Dinçer, M., Özdemir, N., Yıldırım, I., Demir, E., Akçamur, Y. \& Işık, Ş. (2004). Acta Cryst. E60, o317-o319.
Dinçer, M., Özdemir, N., Yıldırım, I., Demir, E. \& Işık, Ş. (2004). Acta Cryst. E60, o946-o948.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schimidt, C. L., Smith, R. N. \& Quin, F. R. (1978). J. Med. Chem. 21, 563-567.

Katayama, H. \& Oshiyama, T. (1997). Can. J. Chem. 75, 913-919.
Lepage, F. \& Hublot, B. (1992). European Patent Application EP 459 887; Chem. Abstr. 116, 128917.
Londershausen, M. (1996). Pestic. Sci. 48, 269-274.
Mahajan, R. N., Havaldar, F. H. \& Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-249.
Mishra, P. D., Wahidullah, S. \& Kamat, S. Y. (1998). Indian J. Chem. Sec. B, 37, 199.

Neunhoeffer, O., Alsdorf, G. \& Ulrich, H. (1959). Chem. Ber. 92, 252-256.
Şener, A., Akbaş, E. \& Şener, M. K. (2004). Turk. J. Chem. 28, 271-277.
Şener, A., Kasımoğulları, R., Şener, M. K., Bildirici, I. \& Akçamur, Y. (2002). J. Heterocycl. Chem. 39, 869-875.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Thomson, W. T. (1997). Agricultural Chemicals - Book II Herbicides, 13th ed., pp. 268, 269-278. California, USA: Thomson Publications.
Verirşen, M. \& Erturan, S. (1998). Turk. J. Chem. 22, 335-340.
Ziegler, E., Eder, M., Belegratis, C. \& Prewedourakis, E. (1967). Monatsh. Chem. 98, 2249-2251.

[^0]: © 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

[^1]: $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{CH}_{4} \mathrm{O}$
 $M_{r}=400.42$
 Orthorhombic, Pcab
 $a=10.8731$ (9) A
 $b=18.7861$ (14) \AA
 $c=20.5836$ (19) \AA
 $V=4204.5(6) \AA^{3}$
 $Z=8$
 $D_{x}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$

[^2]: Mo $K \alpha$ radiation
 Cell parameters from 8043 reflections
 $\theta=2.0-24.5^{\circ}$
 $\mu=0.09 \mathrm{~mm}^{-1}$
 $T=293$ (2) K
 Prism, colorless
 $0.50 \times 0.33 \times 0.21 \mathrm{~mm}$

